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ABSTRACT

In this paper, homotopy perturbation method is applied to the high-order
nonlinear boundary value problems namely fourth-order and seventh-
order. The numerical results are compared to the exact solution to verify
the accuracy of the method used. The results obtained with minimum
amount of computational work show that the present method is efficient
and convenient.
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1. Introduction

Until now, nonlinear analytical methods for solving nonlinear problems have
been conquered by perturbation methods. Perturbation methods are based on
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assumptions that need the existence of a small parameter in an equation Nayfeh
(2000). This small parameter will give an ideal result if it is suitable and vice
versa. Thus it is essential to develop new nonlinear method which does not
require small parameters at all. A great attention has been given towards
the application of homotopy perturbation method in nonlinear problems. This
is related to the fact that homotopy perturbation scheme is continuously de-
form the nonlinear into easier and solvable linear form of equation. HPM is
a method developed by merging the homotopy with perturbation technique.
It has been proposed by He with the aim to solve linear and nonlinear, ini-
tial and boundary value problems. The method has many advantages such
as the solution is given in an infnite series that rapidly converge to the exact
solution, deforms the difficult problem into simpler one for easy computational
work, less time taken to get the solutions, and the method is very straight-
forward as the procedure can be done using pencil and paper only He (2006).
HPM has solved many linear and nonlinear problems including integral equa-
tions Abbasbandy (2006b), quadratic Riccati differential equation Abbasbandy
(2006a), stiff system of ordinary differential equation Aminikhah (2011), partial
differential algebraic equations Jafari (2010) and many more. Boundary value
problems (BVPs) appear in many fields such as physics, engineering, chemistry
and medicine. It has been an active research undertaking in finding the solution
of high-order nonlinear boundary value problems using various numerical meth-
ods due to complexity and strong nonlinearity. Adomian decomposition method
(ADM) has solved third, fourth and fifth BVPs Hasan (2012), Hashim (2006),
Wazwaz (2001), Shahid et.al. use differential transformation method (DTM)to
find the solution of seventh order BVPs Siddiqi (2012). Also, the solution of
eighth-order BVPs are provided by Shahid and Twizell using polynomial spline
Siddiqi (1996) as well as using finite difference methods developed by Boutayeb
and Twizell Boutayeb (1993). Recently, Chowdhury et al.Chowdhury (2009a),
Chowdhury and Hashim Chowdhury (2009b) were the first to successfully ap-
ply the multistage homotopy-perturbation method (MHPM) to the chaotic
Lorenz system and Chen system. The multistage HPM (MPHM) Chowdhury
(2012a,b), Chowdhury et al. (2015), Hashim (2008a,b) is a powerful technique
to get more reliable and efficient approximate solutions for chaotic and hyper-
chaotic problems. It is an improvement over the standard HPM.Very recently,
Chowdhury et al Chowdhury (2013) introduced modified HPM to solve differ-
ential and integral equations. In this work, we are interested to apply the new
technique of choosing initial approximation to the BVPs.
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2. Solution Approach

According to Siddiqi (2014), consider the following n-th order boundary
value problem

y(n)(x) = f(x, y, y′, · · · , y(n−1)), (1)

with boundary conditions

y(a) = α0, y
′(a) = α1, y

′′(a) = α2, · · · , y(n−1)(a) = αn−1, (2)

y(b) = β0, y
′(b) = β1, (3)

where f is a continuous function on [a, b] × D, D is an open subset of Rn−1,
while the parameters αi, β0 and β1 are real numbers. Construct the homotopy
as follows

u(n)(x) = pf(x, u, u′, · · · , u(n−1)). (4)

Here p ∈ [0, 1] is the embedding parameter. The assumption of solution for Eq.
(1)

u = u0 + pu1 + p2u2 + · · · , (5)

If the nonlinear term exists in the equation, it can be expressed as

N(u) = N(u0) + pN(u0, u1) + p2N(u0, u1, u2) + · · · , (6)

where

N(u0, u1, · · · , un) =
1

n!

dn

dpn
[N(

n∑
k=0

pkuk)]p=0, n = 0, 1, 2, · · · . (7)

Equation Eq. (7) is called He’s polynomial . Substitute Eq. (4) into Eq. (5)
and arrange the coefficient of same power of p

u
(n)
0 = 0, u

(i)
0 (a) = A, u

(n−2)
0 (a) = B, u

(n−1)
0 (a) = C, i = 0 · · · (n− 1), (8)

u
(n)
1 = f(x, u0, u

′
0, · · · , u

(n−1)
0 ), u

(i)
0 (a) = 0, i = 0 · · · (n− 1), (9)

u
(n)
2 = f(x, u0, u1, u

′
0, u
′
1, · · · , u

(n−1)
0 , u

(n−1)
1 ), u

(i)
1 (a) = 0, i = 0 · · · (n− 1), (10)
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etc where A,B,C and so on are the initial conditions to be determined. We
substitute with the unknowns when the initial conditions are not given. The
approximations of solutions for Eq. (8) - Eq. (10) are

u0 =

n−1∑
k=0

u(k)(a)

k!
xk, (11)

u1 =

∫ x

a

∫ x1

a

· · ·
∫ x(n−1)

a

f(τ, u0, u
′
0, · · · , u

(n−1)
0 )dx(n−1) · · · dx1dτ, (12)

u2 =

∫ x

a

∫ x1

a

· · ·
∫ x(n−1)

a

f(x, u0, u1, u
′
0, u
′
1, · · ·u

(n−1)
0 )dx(n−1) · · · dx1dτ, (13)

etc. Thus, the solutions can be written as follows

v ' u0 + u1 + u2 + · · · . (14)

By imposing the boundary conditions given in the problem to the (Eq. (14))
the values of A,B,C and so on can be determined. Then insert the values of
A,B,C and so on into the final solutions in (Eq. (14)). Note that the values
of A,B,C and so on depend on how many terms we use in the series solutions.

3. Result and Discussion

3.1 Fourth-Order Differential Equation with Product Non-
linearity

Consider the four-point BVP for the fourth-order nonlinear differential
equation with product nonlinearity (Duan, 2011),

u4(x) + u(x)u′(x)− 4x7 − 24 = 0, 0 ≤ x ≤ 1, (15)

with the boundary conditions

u(0) = 0, u′(0.25) = 6, u′′(0.5) = 3, u(1) = 1. (16)

The exact solution is

u(x) = x4. (17)

The homotopy is constructed as follows

u4(x) = 4x7 + 24− p(uu′(x)). (18)
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Here p ∈ [0, 1] is the embedding parameter. The assumption of solution

u = u0 + pu1 + p2u2 + · · · . (19)

The nonlinear term uu′ is solved using He’s polynomial. Substitute Eq. (19)
into Eq. (18) and arrange the coefficient of same power of p. For 3 terms, we
get

u40 = 4x7 + 24, u0(0) = 0, u′0(0) = A, u′′0(0) = B, u′′′0 (0) = C, (20)

u41 = −u0u0x , u1(0) = 0, u′1(0) = 0, u′′1(0) = 0, u′′′1 (0) = 0, (21)

u42 = u0u1x − u1u0x , u2(0) = 0, u′2(0) = 0, u′′2(0) = 0, u′′′2 (0) = 0, (22)

etc where A,B and C are unknowns to be determined. The solutions of equa-
tions Eq. (20)-Eq. (22) are

u0 =
1

1980
x11 + x4 +

1

6
Cx3 +

1

2
Bx2 +Ax, (23)

In this example, we provide solution of 1-term, 2-terms and 3-terms are respec-
tively,

y0 = u0(x), (24)

y1 = u0(x) + u1(x), (25)

y2 = u0(x) + u1(x) + u2(x). (26)

Impose the boundary conditions given in the problem to Eq. (24)-Eq. (26)
respectively, the values of A,B and C are obtained for each 1-term, 2-term and
3-term are,

A = −451.43× 10−6, B = −104.69× 10−6, C = −7.63× 10−6, (27)

A = 103.11× 10−9, B = 699.93× 10−12, C = 101.25× 10−12, (28)

A = −16.75× 10−12, B = −36.65× 10−15, C = −16.36× 10−15. (29)

Substitute the Eq. (27) into Eq. (24), we get the solution of 1-term HPM.

y0 = 510.00× 10−6x11 + x4 − 1.27× 10−6x3

−52.34× 10−6x2 − 451.43× 10−6x. (30)
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Substitute the Eq. (28) into u0 Eq. (24) and u1 Eq. (25),

u0 = 510.00× 10−6x11 + x4 + 16.88× 10−12x3

+349.96× 10−12x2 + 103.11× 10−9x, (31)

u1 = −9.24× 10−12x25 − 103.20× 10−9x18 − 2.09× 10−18x17

−52.60× 10−18x16 − 19.07× 10−15x15 − 510.00× 10−6x11

−23.44× 10−15x10 − 694.38× 10−15x9 − 306.88× 10−12x8

−8.58× 10−21x7 − 300.71× 10−21x6 − 88.60× 10−18x5, (32)

and substitute Eq. (31)-Eq. (32) into Eq. (25) the series solution for 2-term
become,

y1 = x4 + 1.6875000000× 10−13x3 + 3.4996500000× 10−10x2

+1.0311000000× 10−7x− 9.2418845164× 10−12x25

−1.0315574041× 10−7x18 − 2.0889037430× 10−18x17

−5.2604166670× 10−17x16 − 1.9075369080× 10−14x15

−2.3437500000× 10−14x10 − 6.9437500000× 10−13x9

−3.0687500000× 10−10x8 − 8.5772333360× 10−21x7

−3.0070742620× 10−19x6 − 8.8597267500× 10−17x5. (33)

Note that the values of parameter A,B and C depend on the term used in
the calculations. In table 1 to 3 the error between solution of 1-term, 2-term
and 3-term HPM are compared to the exact solution respectively. The error
is reduced as the term increased. The graphs of error are plotted in figure 4
for 1-term, figure 5 for 2-term and figure 6 for 3-term solution. When 3-term
is used the solution of HPM become equal to the exact solution at x = 0.6
up till x = 1 showing the rapid convergence of HPM. Then, the solution for
3-term HPM and exact solution is plotted in figure 7 showing that the solution
of HPM converges to the exact solution for 0 ≤ x ≤ 1.
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Table 1: The solution of 3-term HPM, exact and the absolute error

x u(x) u(x) Absolute
exact HPM Error

0.0 0.0000000000 0.0000000000 0
0.1 0.0001000000 0.00005433227833 4.56677216700E-05
0.2 0.0016000000 0.001507610037 9.23899630000E-05
0.3 0.0081000000 0.00795982651 0.00014017349
0.4 0.0256000000 0.02541099259 0.00018900741
0.5 0.0625000000 0.0622612864 0.0002387136
0.6 0.1296000000 0.1293118554 0.0002881446
0.7 0.2401000000 0.2397679002 0.0003320998
0.8 0.4096000000 0.4092480876 0.0003519124
0.9 0.6561000000 0.6558088768 0.0002911232
1.0 1.0000000000 1.000000004 4.000000E-09

Table 2: The solution of 2-term HPM, exact and the absolute error

x u(x) u(x) Absolute
exact HPM Error

0.0 0.0000000000 0.0000000000 0
0.1 0.0001000000 0.0001000103145 1.03145000E-08
0.2 0.0016000000 0.001000206360 2.06360000E-08
0.3 0.0081000000 0.008100030964 3.09640000E-08
0.4 0.0256000000 0.025600041300 4.13000000E-08
0.5 0.0625000000 0.06250006164 5.16400000E-08
0.6 0.1296000000 0.12960006200 6.20000000E-08
0.7 0.2401000000 0.2401000722 7.22000000E-08
0.8 0.4096000000 0.4096000807 8.07000000E-08
0.9 0.6561000000 0.65610007750 7.75000000E-08
1.0 1.0000000000 0.9999999995 5.00000000E-10
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Table 3: The solution of 3-term HPM, exact and the absolute error

x u(x) u(x) Absolute
exact HPM Error

0.0 0.0000000000 0.0000000000 0
0.1 0.0001000000 0.00009999999832 1.6800E-12
0.2 0.0016000000 0.00159999999700 3.0000E-12
0.3 0.0081000000 0.00809999999500 5.0000E-12
0.4 0.0256000000 0.02559999999000 1.00000E-11
0.5 0.0625000000 0.06249999999000 1.00000E-11
0.6 0.1296000000 0.1296000000 0
0.7 0.2401000000 0.2401000000 0
0.8 0.4096000000 0.4096000000 0
0.9 0.6561000000 0.6561000000 0
1.0 1.0000000000 1.0000000000 0

E0

x

E
0(
u
(x
))

10.90.80.70.60.50.40.30.20.10

0.00045

0.0004

0.00035

0.0003

0.00025

0.0002

0.00015

0.0001

5e-005

0

Figure 1: The error between 1-term HPM and exact solution.

E1

x

E
u
(x
)

10.90.80.70.60.50.40.30.20.10

1e-007

7.5e-008

5e-008

2.5e-008

0

Figure 2: The error between 2-term HPM and exact solution.
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E2

x
E
u
(x
)

10.90.80.70.60.50.40.30.20.10

1.2e-011

1e-011

8e-012

6e-012

4e-012

2e-012

0

Figure 3: The error between 3-term HPM and exact solution.
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0

Figure 4: The solution of 3-term HPM and exact solution.

3.2 Seventh Order Nonlinear BVP

Consider the following seventh-order BVP (Inc, 2014),

u7(x) = u(x)u′(x) + e−2x(2 + ex(x− 8)− 3x+ x2), 0 ≤ x ≤ 1, (34)

with the boundary conditions

u(0) = 1, u′(0) = −2, u′′(0) = 3, u′′′(0) = −4,

u(1) = 0, u′(1) = −1

e
, u′′(1) =

2

e
. (35)

The exact solution is

u(x) = (1− x)e−x. (36)

The homotopy is constructed as follows

u7(x)− v70(x) + p(v70(x)− u(x)u′(x)− e−2x(2 + ex(x− 8)− 3x+ x2)), (37)
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initialize the unknown initial conditions as

u4(0) = A, u5(0) = B, u6(0) = C. (38)

In the earlier works Chowdhury et.al. Chowdhury (2013), introduced an alter-
native of choosing the initial approximations

v0 = L−1(g(x)) + φx = f(x), (39)

where the function f(x) represents the terms arising from integrating the source
term g(x) and from using the given conditions φ(x), all of which are assumed
to be prescribed. The nonlinear term Nuk = F (u) is usually represented by
an infinite series of the so-called He’s polynomials. The modified form is based
on the assumption that the initial approximation v0 given in Eq. (39) can be
decomposed into two parts, namely f0 and f1 such that f = f0 + f1. Under
this assumption ,

u0(x) = f0(x), (40)

p1 : u1 = f1 − L−1(Ru0)− L−1(Nu0), (41)

pk+2 : uk+2(x) = −L−1(Ruk+1)− L−1(Nuk+1)

= −L−1(Ruk+1)− L−1(Hk+1), k ≥ 0. (42)

Using the method proposed,

v0 = L−1(e−2x(2 + ex(x− 8)− 3x+ x2)) + 1− 2x

+
3

2
x2 − 2

3
x3 +

Ax4

24
+
Bx5

120
+
Cx6

720
, (43)

where L = ∂7

∂x7 and L−1 =
∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0

∫ x

0
(.)dxdxdxdxdxdxdx

and

v0 = f0 + f1. (44)

Following Eq. (40)-Eq. (42) for 3 terms,

u0(x) = f0(x), (45)

u1 = f1(x) + L−1(Nu0), (46)

u2 = L−1(Nu1). (47)
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The nonlinear term u(x)u′(x) is given by the He’s polynomial. Thus,

u0 = 1, (48)

u1 := − 1

11520

(
11025e2x − 22410xe2x + 16920x2e2x − 7560x3e2x

+2370x4e2x − 564x5e2x + 104x6e2x + 495 + 11520xex

−11520ex + 90x2 + 360x

)
e−2x +

1

720
Cx6

+
1

120
Bx5 +

1

24
Ax4 − 2

3
x3 +

3

2
x2 − 2x, (49)

u2 :=
1

3832012800

(
19173161700e2x − 15349568850xe2x +

5765326875x2e2x − 1286381250x3e2x + 163097550x4e2x −
997920x5e2x − 5093550x6e2x − 41580x7e2x + 5940x8e2x −
3832012800xex − 19160064000ex − 4677750x− 13097700−

467775x2 − 660x9e2x − 5214x10e2x + 564x11e2x − 52x12e2x

+8Cx12e2x + 96Bx11e2x + 1056x10e2x
)
e−2x. (50)

By imposing the boundary conditions given, the values of A, B and C are
obtained

A = 5.002746746, B = −6.039224163, C = 7.197868078 (51)

The solution of 3 terms of HPM is

y2 = 1− 1

11520

(
11025e2x − 22410xe2x + 16920x2e2x − 7560x3e2x

+2370x4e2x − 564x5e2x + 104x6e2x + 495 + 11520xex − 11520ex

+90x2 + 360x

)
e−2x + 0.009997038997x6 − 0.05032686802x5

+0.2084477811x4 − 2

3
x3 +

3

2
x2 − 2x+

1

3832012800(
19173161700e2x − 15349568850xe2x + 5765326875x2e2x

−1286381250x3e2x + 163097550x4e2x − 997920x5e2x − 5093550x6e2x

−41580x7e2x + 5940x8e2x − 3832012800xex − 19160064000ex

−4677750x− 13097700− 467775x2 − 660x9e2x + 68.900564x10e2x

−15.7655196x11e2x + 5.58294462x12e2x
)
e−2x. (52)
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Table 4: The solution of 3-term HPM, exact and the absolute error

x u(x) u(x) Absolute
exact HPM error

0.0 1.0000000000 1.0000000000 0
0.1 0.8143536762 0.8143536841 7.9000000E-09
0.2 0.6549846025 0.6549847014 9.8900000E-08
0.3 0.5185727545 0.5185730824 3.2790000E-07
0.4 0.4021920276 0.4021926803 6.5270000E-07
0.5 0.3032653298 0.3032662574 9.2760000E-07
0.6 0.2195246544 0.2195256434 9.8900000E-07
0.7 0.1489755911 0.14897636 7.6890000E-07
0.8 0.08986579282 0.08986618468 3.91860E-07
0.9 0.04065696597 0.04065704395 7.79800E-08
1.0 0 −0.0000000012505 1.25050E-09

The exact solution and solution of HPM together with the absolute error for
the first 3 terms are presented in table 8. From the error it shows that the
solution of HPM agrees to the exact solution using only 3 terms. In figure 9
the absolute error is plotted from x = 0 to x = 1 while in figure 10 the exact
solution and the solution of HPM are plotted.

E2

x

E
u
(x
)

10.90.80.70.60.50.40.30.20.10

1.2e-006

1e-006

8e-007

6e-007

4e-007

2e-007

0

Figure 5: The error between 3-term HPM and exact solution.
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exact
HPM

x
u
(x
)

10.90.80.70.60.50.40.30.20.10

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6: The solution of 3-term HPM and exact solution.

4. Conclusions

In this task, the high-order nonlinear BVPs are solved accurately by HPM
using only a few iterations. The technique of deciding the initial approx-
imation is important in HPM.Unlike the traditional methods, the solutions
here are given in series form. The approximate solution to the equation was
computed without any need for special transformations, linearization or dis-
cretization.Comparison with the exact solutions shows that the homotopy-
perturbation method is a promising tool for finding approximate analytical
solutions to strongly nonlinear BVPs.
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